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ABSTRACT

Aiming at discriminating different gravitational potential models of the Milky Way, we perform tests based on the kinematic data
powered by the Gaia DR2 astrometry over a large range of (R, z) locations. Invoking the complete form of Jeans equations that
admit three integrals of motion, we use the independent R- and z-directional equations as two discriminators (7 and 7,). We
apply the formula for spatial distributions of radial and vertical velocity dispersions proposed by Binney et al., and successfully
extend it to azimuthal components, oy (R, z) and Vy(R, z); the analytic form avoids the numerical artifacts caused by numerical
differentiation in Jeans-equations calculation given the limited spatial resolutions of observations, and more importantly reduces
the impact of kinematic substructures in the Galactic disc. It turns out that whereas the current kinematic data are able to reject
Moffat’s Modified Gravity (let alone the Newtonian baryon-only model), Milgrom’s MOND is still not rejected. In fact, both the
carefully calibrated fiducial model invoking a spherical dark matter (DM) halo and MOND are equally consistent with the data
at almost all spatial locations (except that probably both have respective problems at low-|z| locations), no matter which tracer
population or which meaningful density profile is used. Since there is no free parameter at all in the quasi-linear MOND model
we use, and the baryonic parameters are actually fine-tuned in the DM context, such an effective equivalence is surprising, and
might be calling forth a transcending synthesis of the two paradigms.

Key words: gravitation — Galaxy: halo — Galaxy: kinematics and dynamics —dark matter.

the low-surface-brightness parts of luminous galaxies, and so on (e.g.
Angus et al. 2015; Dabringhausen et al. 2016; McGaugh, Lelli &
Schombert 2016).

1 INTRODUCTION

Is the ‘missing mass problem’ on (circum-)galactic scales due to the

presence of dark matter (DM) or alternatively the delicate deviation
of the underlying physical law from Newtonian gravity/dynamics?
This is a fundamental and long outstanding question (see reviews, e.g.
Feng 2010; Milgrom 2010b; Famaey & McGaugh 2012; Bullock &
Boylan-Kolchin 2017; Banik & Zhao 2022). The dynamics of gas and
stars in and around galaxies has been observed to be in excess of the
Newtonian gravity of the total baryonic content of the galaxies; the
observational evidence includes the rotational curves of disc galaxies,
the stellar velocity dispersion fields of low-luminosity galaxies, and
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Surprisingly and importantly, there are tight couplings (e.g. the
Tully—Fisher relation; Tully & Fisher 1977; McGaugh et al. 2000)
between the excess gravity and the baryonic content (see the
above reviews). This fact inspired a gradually increasing number
of researchers to interpret the ‘excess’ with modified gravity (or
dynamics) theories such as the ‘modified Newtonian dynamics’
(MOND) proposed by Milgrom (1983) and the ‘modified gravity’
(MOG) by Moffat (2006), instead of the popular DM paradigm.
So far, however, no observational test is conclusive for the two
competing paradigms on (circum-)galactic scales.

Previously, almost all observational tests (see Famaey & McGaugh
2012; Banik & Zhao 2022) of DM versus MOND (or MOG)'

By ‘DM’, we mean Newtonian gravity with a DM component in addition
to baryonic components for galaxies. In this paper, we focus on the ‘extra
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have employed either rotational velocity data commonly (in disc
galaxies) or sometimes stellar velocity dispersion (o) data, with
only a few exceptions (e.g. Angus et al. 2015, Lisanti et al. 2019, and
Chrobakovd et al. 2020; see also Nipoti et al. 2007 for methodological
analysis), using both observed rotational curve (RC; in the galactic-
disc plane) and observed o, information (particularly in the direction
vertical to the disc) of a galaxy. By invoking Jeans equations, data of
o, as well as streaming velocity 7y are linked to models of the galactic
gravitational potential ® (see section 4.8 of Binney & Tremaine
2008). The advantage of jointly using both RC and o, data is obvious
with more constraints independently (Stubbs & Garg 2005).

Unfortunately, almost all the studies involving o, data in the
literature adopted an unrealistic simplification of Jeans equations:
they all assumed a two-integral distribution function, for instance,
the popular f = f(H, L), where H is the Hamiltonian of the system
and L, the z-direction angular momentum. Thus, the stellar velocity-
dispersion tensor having ox = o, and og, = 0 denoted in the
cylindrical coordinate system (R, 6, z), i.e. the o, distribution in
a meridional plane is isotropic, and the tilt angle of the velocity
ellipsoid & = 0. By doing so, the corresponding velocity-dispersion
terms in Jeans equations are reduced or vanished accordingly, and
the Jeans equations are closed (see section 2.1 of Nipoti et al. 2007,
Section 2.2 of Angus et al. 2015, section III.B of Lisanti et al. 2019;
cf. section 2.1 of Kipper et al. 2016). But the fact, well known for
decades, is that og # o, and ok, # 0 in the observed disc galaxies
(e.g. the MW and M31; see Kipper et al. 2016 and references therein).
Besides, there is more evidence supporting the viewpoint that the
stellar orbits do respect, for which there is no analytic expression
though, a third integral of motion (see Kipper et al. 2016; also
section 3.2 and section 4.4 of Binney & Tremaine 2008). Specifically,
concerning Jeans-equations modelling of the MW, the necessity of
incorporating the cross-dispersion term o g, (i.e. tilt angle) in Jeans
equations has been thoroughly analysed (e.g. Hessman 2015, section
3 of Biidenbender, van de Ven & Watkins 2015 and more subsequent
studies).

Besides the purpose to close Jeans equations, a practical reason of
the above unrealistic simplification is to circumvent the calculating
difficulty: the Jeans equations can only be solved numerically for
all practical purposes with observational kinematic data used, and —
to be worse — it usually requires algorithmic techniques to calculate
the general form of Jeans equations (involving three distinct o,
components and the cross term o, and their derivatives), given the
limited observational data so far. Normally, it involves numerically
calculating the partial derivatives of those o, components with
respect to R and z (e.g. Chrobakova et al. 2020; cf. Section 4.1),
which in principle demands dense sampling along the R and z
directions (as well as careful numerical differentiation schemes or
novel algorithms to minimize the notorious ‘huge numerical errors’),
and worse, is vulnerable to the impact of galactic substructures. The
worrisome fact is that the stellar kinematics in galactic discs (e.g. the
disc of the MW) is commonly affected by stellar substructures; or, in
other words, galactic discs are full of kinematic substructures (Gaia
Collaboration et al. 2018b).

In addition, in the aforementioned studies invoking Jeans equa-
tions, they not only simplified Jeans equations by assuming two-
integral dynamics, but also usually approximated the solution of

mass/gravity’ phenomena on circum-galactic and galactic scales only, i.e.
within the gravitational binding of the so-called DM halo (in the DM
language) hosting some galaxy. It is in this context that the statements like
this sentence hereinafter should be understood.
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Jeans equations with an algebraic formula between the averaged
vertical o' and the mass surface density locally at every radius R, i.e.
JZ(R) ~ ¥(R) (commonly seen for external disc galaxies; see e.g.
Angus et al. 2015). That simple formula was derived by neglecting
the components of gravitational force in the z = const planes (i.e.
assuming that the gravitational force is in the z direction only, a
so-called planar symmetry in the literature), which was actually
wrongly assumed (or over-simplified) for the dynamics of stars (see
section 6.1 of Piffl et al. 2014 and section 4.2 of McGaugh 2016
for the MW; footnote 2 of Nipoti et al. 2007 for external galaxies).
This simplification is actually the simplest version of the old ‘K,
method’ so-called in the literature, and makes the system completely
one-dimensional in the sense of both Jeans equations and Poisson
equation. To be specific, following the notations of Read (2014)
(see his Section 3.3), while K,(z) means vertical force, —%(z)
literally, this simplest K, method yet ignores both the ‘tilt term’ in
z-directional Jeans equation and the ‘rotation-curve term’ in Poisson
equation. Likewise, in some studies using MW data, the link between
the vertical density profile (p(z)), and vertical distribution of the z-
component velocity dispersion (o ,(z)) of a tracer population was
established by this simplest K, method (see e.g. Section IIL.B of
Lisanti et al. 2019).

Aiming at observationally discriminating between DM and al-
ternative gravitational potential models, we employ the complete
form of Jeans equations that admit three integrals of motion,? and
perform tests on the latest kinematic data powered by the Gaia
DR2 astrometry. In the Gaia era, the measurement uncertainties
(e.g. the effect onto kinematic quantities caused by systematic
bias in distance estimation) are no longer the major concern (see
Section 4.1). Because the general form (namely 3-integral) of Jeans
equations are not closed, instead of solving it with the above-
mentioned simplifications, we use the two independent Jeans equa-
tions, R- and z-directional, as two discriminators of the consistency
between gravitational potential models and kinematic data. In order
to (1) reduce the impact of various kinematic substructures in the
Galactic disc, as well as (2) to avoid the numerical artifacts caused
by numerical differentiation in Jeans-equations calculation given the
limited spatial resolutions of the observational data, we apply the
analytic form for o(R, z) and o ,(R, z) proposed by Binney et al.
(2014), and successfully extend it to the azimuthal components o4 (R,
z) and Vy(R, z). Our comprehensive tests consistently point to the
conclusion: Whereas the current kinematic data, with the precision
and accuracy powered by Gaia DR2, is able to reject the MOG model
(let alone the Newtonian baryon-only model, adopting the baryonic
mass distribution priorly best-fitted in the DM paradigm), the MOND
model is still not rejected, and behaves as good as the DM model.
This is surprising, because while the fiducial DM model we adopt was
carefully pre-fitted with all available Galactic kinematic data, and in
fact has been kept improving elaborately by researchers during past
decades (see Section 3.1 and the references therein), there is no free
parameter at all in the MOND model (no bother of fitting), and the
parameters of the baryonic mass model are actually fine-tuned in the
DM context.

This paper is organized as follows. In Section 2, we describe
the complete form of Jeans equations for axisymmetric systems, and
propose the two measures Tk and 7. In Section 3, we give the fiducial

2Regarding the methodology, one of our aspirations came from the critical
analysis by M.Milgrom on the methodology of the DiskMass project,
particularly on the analysis method of Angus et al. (2015); see Milgrom
(2015) and Angus, Gentile & Famaey (2016) for the detail.

€202 ABIN L0 U0 15aNB Aq 01 1 2989/6.Y/E/6 1 G/aI0IE/SEIUW/WO9"dNO"D1WLSPED.//:Sd)IY WO} PapEOjuMOd



mass distribution model of the MW used in this work, with best-fit
model parameters in the DM context (Section 3.1), and describe
two alternative gravitational potential models, namely quasi-linear
MOND (Section 3.2) and MOG (Section 3.3). In Section 4, we
introduce the data we employ particularly in Section 4.1, we
describe our further analysis of the 3D velocity data of Huang et al.
(2020), and present our best-fit formulae for the spatial distributions,
namely oz(R, z), 0;(R, 2), 09(R, z), and Vy(R, z). In Section 5,
we present the results of comprehensive tests on the gravitational
potential models, particularly the Tx and T, tests using different
tracer populations with various density profiles of tracers assumed
(Sections 5.2 and 5.3); in Section 5.6, we discuss the physical
implication as well as its practical application of our main result.
In addition, in the Appendix, we present the results using a different
parametrization of the Galactic mass model and corresponding
kinematic data, which are consistent with the results in the main
text. Section 6 summarizes the paper. Throughout the paper, we
adopt a Galactocentric cylindrical system, with R being the projected
Galactocentric distance increasing radially outwards, 6 toward the
Galactic rotation direction, and z in the direction of north Galactic
pole.

2 TWO DISCRIMINATORS IN TERMS OF THE
THREE-INTEGRAL JEANS EQUATIONS

Rotation curves, which involve rotational velocities (i.e. in the
azimuthal direction) only, and are conventionally measured in
the galactic mid-plane only, are one-dimensional: reflecting the
azimuthally averaged R-directional acceleration; i.e. V2(R)/R =
dP/IR(R;z = 0).

Most previous applications of Jeans equations, as described in the
Introduction, assumed two-integral dynamics and even additional
simplifications, which are not consistent with the observed kinematic
data of the WM, the subject of the present study.

Our own Galaxy provides three-dimensional data, i.e. the 3-
directional components of velocity-related quantities (see Section 4).
Moreover, it enable us to test gravitational potential models at
different spatial locations (R, z), or even at three-dimensional
locations (R, 6, z) in the future. This is in stark contrast with external
galaxies, where only vertically-averaged quantities are available,
such as observed radial o, profiles (e.g. the DiskMass project; see
Angus et al. 2015).? The point is, the set of kinematic data (o, and ¥y)
at every (R, z) location can be regarded as an independent constraint
to the gravitational models through Jeans equations, and thus the
more data points — particularly those at relatively largez — the better
the models get constrained.

To test gravitational models comprehensively, with three-
dimensional kinematic quantities (namely their R-, z-, and 0-
directional components) and at different (R, z) locations, we invoke
the complete form of Jeans equations. For a steady-state collisionless
gravitational system, Jeans equations relate the gravitational field of
the system to the density and kinematic qualities of a certain tracer
population (Section 4.8 of Binney & Tremaine 2008). We write the
equations using the notations of Kipper et al. (2016). Because the
mass models we use are axisymmetric (see Section 3.1), the two
cross-term components of the velocity dispersion tensor are zero,

3 The o profiles mean o.(R) where o, is averaged or integrated over the
z direction, similar to the form of RCs V. (R). Likewise, in radial profiles
of line-of-sight (LOS) o, (namely oos(R); e.g. Kipper et al. 2016), o5 is
averaged or integrated along the line of sight.
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org = 0g; = 0. Thus, the complete Jeans equations can be written
as two independent equations in cylindrical coordinates:

d(pa}) . (1 — ke 8/() ) 3(po3) B ‘ﬁ

IR R oz ) PR 9z R
L 0
= TR
d(po?) & 0& 5 d(po?) o
7 2 2 - = —p—, 2
a2 +(R+8R PO TER Pz @

where k = %tan(Za)(l —k;), & = «lk;, and V = vy, the averaged
azimuthal velocity of tracers at every location. The parameter « is
the tilt angle of the velocity ellipsoid, i.e. the angle by which the
ellipsoid’s longest axis at every position is tilted with respect to the
galactic-disc plane. The other two parameters, k. and kg, are the axial
ratios of the ellipsoid: k, = 012 Jo} and ky = o2 /o}. Note that p in
Jeans equations is tracer’s density, while @ is the total gravitational
potential contributed by all components of the system.

Given observed kinematic data, a right gravitational model or
theory should satisfy the two Jeans equations everywhere throughout
the MW. As mentioned, because the equations are not closed, we
define two measures as follows,

1 8(,001%) 1—ky Ok 2
Tp = —— d
R=75 { or T\ R Taz)P%

dpog) Vi
2070 M G)
and
_ L fded) (& 0EN ,  3(pad)
S it e Lt T S

According to the Jeans equations (equations (1) and (2)), a correct
gravitational model (@) should satisfy

T — oD )
R~ 9R
and
0D
T,=—, (6)
0z

everywhere throughout the MW. We call the above two criteria
‘Tg test’ and ‘T, test’, respectively. We will see (Section 5.3),
the discriminating power of Ty test comes from the fact that
it is fairly insensitive to the choice of tracer’s density profile
(namely the common prescriptions for galactic components), while
the merit of 7, test is instead its sensitivity to tracer’s density
profile.

The measure Tk, in fact, is the observed R-directional acceleration,
calculated from og, o, (through «), o4 (through ky), Vy, and tilt angle
a (through k), as well as tracer’s density profile p(R, z). Thus Tk
test means that the observed R-directional acceleration equals to the
radial gradient of gravitational potential at any locations. It can be
regarded as a generalized rotation-curve test, on and off the galactic
mid-plane (Chrobdkovi et al. 2020).

Likewise, the measure 7, is the observed z-directional acceler-
ation, calculated from o, and tilt angle « (through &), as well as
tracer’s density profile p(R, z). T, test means that the observed z-
directional acceleration equals to the vertical potential gradient at
any locations. In testing the vertical characteristics of gravitational
models, 7, is more universal and accurate (i.e. without additional
simplifications) than the old K, (‘vertical force’) method as men-
tioned in the Introduction (see also Section 3.3 of Read 2014, and
Section 5.2 below), that is generally either partially one-dimensional

MNRAS 519, 4479-4498 (2023)
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(e.g. neglecting the tilt term in vertical Jeans equation; e.g. McGaugh
2016), or even completely one-dimensional (in both vertical Jeans
and Poisson equations; e.g. Lisanti et al. 2019).

Note that we deliberately use a different terminology ‘7>’ (as well
as ‘Tg’) rather than the old ‘K.’, in order to avoid any possible
prejudice resulting from the simplified use of the ‘K,” method
prevailing in the literature, and to stress that our two measures by
definition are observed vertical and radial kinematic accelerations
calculated from tracers’ density profile and kinematic data. By
definition, K, is vertical field strength, namely the negative of
gradient, of (theoretical models of) gravitational potential. Because
of the same consideration in this paper, we often use the words
‘acceleration’ versus ‘field strength, force, or gradient’ differently.

3 MASS DISTRIBUTION (POTENTIAL)
MODELS OF THE MILKY WAY

In this work, we focus on the global potential field of the MW, particu-
larly the outer part where the circular velocity and velocity dispersion
are dominated by the supposed DM, we therefore choose to ignore
kinematic substructures of stars, and non-axisymmetric structures
(e.g. bars and spiral arms) that are dynamically important mainly in
the inner part. Specifically, we use and compare axisymmetric mass
models of the MW throughout the paper.

For all the models, we implement a light-weight C program to
solve the axisymmetric potential on a 1280° grid using the direct
sum method (Binney & Tremaine 2008). The grid is equally divided
into cells, and every cell physically corresponds to a spatial size
60pc on a side. We have checked the numerical convergence and
verified our results, using FreeFem++ (Hecht 2012), a popular
software solving partial differential equations with the finite-element
method (FEM), which achieves both high-spatial resolution and high
precision.

3.1 Fiducial model of the Galactic mass distribution

The fiducial mass model we use in the main text is the one prescribed
by Wang, Hammer & Yang (2022). It adopts the mass distribution
profile formulae and basic structural parameter values from the best-
fit main model of McMillan (2017) for the bulge, stellar discs, and
interstellar medium discs, and the Zhao’s (Zhao 1996) profile for
the DM halo. The density values (namely the normalization of the
aforementioned profiles), as well as the scale lengths of thin and
thick stellar discs and the other parameters of the DM halo, are
constrained by Wang et al. (2022) with latest observations powered
by Gaia DR2 (Gaia Collaboration et al. 2018a) and Gaia EDR3
(Gaia Collaboration et al. 2021). We briefly summarize the details of
every components below.
The bulge’s density profile is

’ 2
£0.,b r
Pp=—"7—exp|—|— . @)
"+ Dy p{ (rcut):|

and, in cylindrical coordinates,

2
= R2 + (i) , (8)
q

with pgp = 9.5 x 101 Mgkpc ™3, o = 1.8, ry = 0.075kpc, rew =
2.1kpc, and axis ratio g = 0.5.

The stellar discs of the Milky Way are usually considered to be
divided into two components: the thin disc and thick disc. Their mass

MNRAS 519, 4479-4498 (2023)

Table 1. Disk parameters for the Milky Way mass model

Wwe use.
Thin Thick H1 H;
So[Mopc=?]  1003.12 16793  53.1  2179.5
Rqalkpc] 242 3.17 7.0 1.5
zalkpe] 0.3 0.9 0.085 0.045
Rin[kpe] - - 4.0 12.0
distributions follow the following form
Xy lz] R
Pa(R, 2) = S— ex (_7 -4 ) ©))
20 "N\ R

with corresponding scale height z4, scale length Ry, and central
surface density X.

The interstellar medium of the Milky Way includes two compo-
nents: the HI and molecular H, gas discs. These discs follow the
density law

o R, R )
pe(R,2) = — exp | ——- — — | sech™(z/2zq), (10)
4Zd Rd

R
with R, being the associated scalelength of the central hole. The
actual width of the hole is determined by both Ry and Ry, with
the maximum surface density (i.e. the rim of the hole) being at
R = /R4R.,. The parameters of the stellar and gas discs are listed
in Table 1.
The DM halo is described by the Zhao’s profile,

o\ 7 N
on(r) = pon (*) {1 + <*> } , (11)
T h

where the full set of three free parameters («, 8, y) can be calculated
analytically. In this paper, we adopt the best derived value (o, B,
y) =(1.19,2.95,0.95) (see Table 2 of Wang et al. 2022). The Zhao’s
profile is more flexible than the widely used NFW (Navarro, Frenk &
White 1996) profile, and will reduce to the normal NFW formula in
the case of («, B, y) = (1, 3, 1). The remaining halo parameters are
as follows: pop = 1.55 x 107 Mg kpe™, r, = 11.75kpc, and g =
0.95.

In this study (except in the Appendix), we use the distance from the
Sun to the Galactic Centre Ry = 8.122 kpc (Gravity Collaboration
et al. 2018), and a nominal circular velocity ve ~ 229.0kms~! at
the radius of the Sun (e.g. Eilers et al. 2019). The fiducial model of
the Galactic mass distribution was built under the same R and vg
constants, i.e. the same as Eilers et al. (2019) (Wang 2022, private
communication).

We have explored other parametrizations of the Galactic mass
distribution (as well as other kinematic data), including those under
other sets of the solar position and velocity values (Ry and vg),
and found that our conclusions remain intact. Such an examination,
performed under the legacy Rg and vg values, is presented in the
Appendix.

Finally, because the model parameters of the above Galactic
components were constrained in the DM context for fair comparison
between DM and modified-gravity models, we need to make clear
to what degree the data used in constraining the fiducial mass model
(by McMillan 2017 and Wang et al. 2022) overlap the data we use
here to discriminate gravitational models. Here, we summarize the
data that were already used to fit the fiducial mass model, and list the
overlapped parts with the data used in the present study. McMillan
(2017) used various rotation-curve data, solar velocity (to constrain
vg), vertical-force data at |z| = 1.1kpc and R = Ry of Kuijken &
Gilmore (1991), and the upper limit of the total mass within the MW’s
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inner 50 kpc according to Wilkinson & Evans (1999). Wilkinson &
Evans (1999) based their estimate on the distance and velocity data of
27 objects in the outer Galaxy (satellite galaxies and globular clusters
at R > 20kpc). Wang et al. (2022) used the rotation-curve data of
Eilers et al. (2019), the vertical-force data at |z| = 1.1 kpc and 4 < R
S 9kpe, K 1.1kpe(R), derived by Bovy & Rix (2013) based on G-type
dwarf stars from SDSS/SEGUE survey (see also Section 5.4), and
kinematic data of globular clusters. In relation to the data used in the
present study (see Section 4), (1) the rotation-curve data, concerning
radial accelerations in the Galactic plane, are essentially overlapped
(particularly the best data obtained by Eilers et al. 2019); (2) the
radial accelerations off the Galactic plane (namely rotation curves
at |z| > 0) probed by our data are not available in either McMillan
(2017) or Wang et al. (2022); (3) as to the data concerning vertical
accelerations (e.g. the so-called ‘vertical force’ K, data), in effect
there is overlap to a certain degree, but the vertical accelerations
probed by our data are not limited at |z| = 1.1 kpc; (4) the data of
satellite galaxies and globular clusters used by McMillan (2017) and
Wang et al. (2022) are completely irrelevant to our data.

3.2 Quasi-linear MOND

QUMOND is the quasi-linear realization (Milgrom 2010a) of the
MOND theory (Milgrom 1983). MOND was initially proposed to
explain the flat rotation curves of galaxies without DM. We refer
the reader to recent reviews (such as Famaey & McGaugh 2012 and
Banik & Zhao 2022) for detailed and lucid descriptions. In this work,
essentially we treat QUMOND as a gravitational potential model
rather than a ‘modified gravity or dynamics’ theory; i.e. we employ
it in the fashion of py, + Ppam, With ppam as an alternative of popular
DM haloes. Here, ‘pdm’ (or in capital letters) means ‘phantom dark
matter’, a term coined to reflect that this MOND effect — such a
virtual (phantom) stuff — would be interpreted by a Newtonist as a
DM halo (see below). We calculate the QUMOND potential with the
baryonic mass density profile prescribed in the fiducial mass model.

The MOND acceleration was originally written in the following
way (the Milgrom 1983 formula):

" (5) g= g (12)

ao
where p(x) is an interpolating function, and
u(x) — 1forx > 1and u(x) —» x forx < 1. (13)

Here g\ is the Newtonian gravitational acceleration gy = —V®y,
and &y is the Newtonian potential:

V20, = 4G py, (14)

with py, being the baryonic matter density. In terms of the simple
Milgrom 1983 formula (equation 12), however, the acceleration field
g is not derivable from a scalar potential, and consequently there is
no conserved momentum.

QUMOND, just like its cousin AQUAL (aquadratic Lagrangian
formulation of MOND, Bekenstein & Milgrom 1984), is a complete
theory that is self-consistently derivable from an modified Newtonian
gravitational action (see Famaey & McGaugh 2012 for the detail).
QUMOND has the following Poisson equation:

V2 =V. [v(?)V@N}, (15)
0

where scalar @ is the QUMOND gravitational potential, and v(y) is
an interpolating function. The function v(y) is related to the above
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w(x) by v(y) = 1/u(x) and y = xpu(x). We can define ¥(y) = v(y) — 1,
then equation (15) leads to

Vo —V. [VdDN + a(g—‘“> Vch}, (16)
ao

or

V2 = 4w G(py + Ppdm)- (17)

Equation (17) reveals the merit of QUMOND: the gravitational
potential can be ascribed formally to two matter sources in terms
of normal Poisson equation, the baryonic matter and the afore-
mentioned PDM. From a mathematical point of view, the PDM
density ppam is conceptually equivalent to the density of ‘DM haloes’
(but with totally different physical content); see Section 5.5, also
Milgrom 2010a and section 6.1.3 of Famaey & McGaugh 2012.
Accordingly, there is a striking technical advantage (e.g. compared
with AQUAL that involves a non-linear generalization of Poisson),
whichis obvious: QUMOND involves solving only /inear differential
equations (namely the normal Poisson equation). Thus, all the well-
developed algorithms (e.g. Tree-PM) and codes (e.g. Gadget of
Springel 2005) for Newtonian N-body numerical calculations and
simulations are still usable in QUMOND.*

In practice, given baryonic py, or @y, ppan is calculated straight-
forward as follows,

- v (5(%)\ve (18)
Ppdm = 4G a0 N |-
Correspondingly, we can trivially define a scalar ¢pqn as the PDM
potential,

Vi = V - (ﬁ <g—N) V©N) = 470G ppam. (19)
ag
then the QUMOND potential can be written as ® = ®y + ¢panm -

In this work, the critical acceleration constant is held fixed to be
the commonly used value ay = 1.2 x 107" m s (Banik & Zhao
2022). The simple formula of v(y) is adopted (Famaey & McGaugh
2012):

S P (20)
2 y 2

That is, there is no free parameter at all in the QUMOND formula
that we use in this study.

Note that in this work, we have not taken into account the so-
called ‘external field effect’” (EFE) of MOND. EFE is a general
characteristic of MOND (particularly its modified-gravity theories
such as QUMOND), because MOND depends on the fotal accelera-
tion with respect to some pre-defined (inertial) frames. But EFE does
not necessarily exist in specific MOND theories (see Section 4.6 of
Milgrom 2014), particularly in modified-inertia theories of MOND
(see Milgrom 2011). Thus, in this work, we only practically use
QUMOND as a practical (effective) formula to calculate the MOND
potential of the MW baryons, and refrain from accounting for the
subtlety of EFE. Anyway, practically, the gravitational strength
of the external field around the MW is reasonably estimated to

4In the literature, there was a claim that due to the non-linearity of MOND,
the Poisson solvers that are not based on grids/meshes, such as tree-codes,
cannot be used (e.g. section 2.1 of Angus et al. 2013). This is not necessarily
true for QUMOND, because one can build a temporary grid to implement
equation (18), calculating PDM density from Newtonian potential, which is
not difficult technically (section 6.1.3 of Famaey & McGaugh 2012).
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be 0.01-0.03ay (Wu et al. 2008), which is ~10? times smaller
than the Newtonian gravitational strength at the (R, z) locations
considered in this work; i.e. the EFE is negligible for our purpose. In
addition, mention in passing that by defining g = —V &, the complete
MOND theories so far (such as QUMOND and AQUAL) assume the
gravitational vector field is still curl-less, in contrast, the gravitational
or acceleration field g defined in the pristine Milgrom (1983) formula
(equation 12) is curled.

3.3 Moffat’s MOG

We also test another alternative to DM, Modified Gravity (MOG;e.g.
Moffat 2006; Moffat & Rahvar 2013), which is a covariant modifica-
tion of Einstein gravity. Simply put, MOG adds two additional scalar
fields and one vector field to explain the dynamics of astronomical
systems based on the distribution of baryonic matter.

In the weak field approximation (e.g. in the MW), the effective
potential for an extended distribution of baryonic matter (p) in MOG

is as follows:
) 1— G — Gy et} Pyl
|x - x,| (;oo

d(x)= -G [

2n

with G = (1 + a)Gy being the modified gravitational constant. In
this work, the two universal constants are held fixed to be & = 8.89
and nu = 0.042 kpc", which are best fitted with the rotation-curve
data of external galaxies by Moffat & Rahvar (2013).

4 DATA

We use recent kinematic observations, including the rotation curve
and three-dimensional velocity dispersion of the MW to test the
gravitational models. We only include data at R > 4 kpc to avoid the
complexity in the central region of the MW. Besides the data collected
from the literature, we analyse and fit the spatial distributions along
R and z directions of oy, 0, 04, and Vj (namely the mean azimuthal
velocity, see Section 2). We basically follow the methodology of
Binney et al. (2014), except for an additional innovation that we also
give well-parametrized formulae for o4(R, z) and Vy(R, z), which
are described below (Section 4.1).

Our own Galaxy is remarkable in testing gravitational models.
There are already plenty of kinematic observations of both RC
and o, (as well as ¥y). Moreover, although on the one hand our
position inside the Galactic disc weakens the ability to measure
the RC in the outer Galaxy, on the other hand it allows a three-
dimensional measurement of the position and velocity of individual
stars, particularly of those in the z direction far into the halo.

4.1 Spatial-distribution formulae for three-dimensional
kinematics based on Gaia DR2

We analyse the three-dimensional velocity data of the LAMOST and
Gaia red clump sample complied by Huang et al. (2020).
This sample, consisting of ~137000 red clump stars (as the tracer
population in this work), has a good coverage of the Galactic disc of
4 <R < 16kpc and |z| < 4kpc.

In order to reduce the impact of particular structures in the Galactic
disc (e.g. stellar streams of various origins; Gaia Collaboration et al.
2018b), we fit the velocity dispersion, o g, 0, and o, to the smooth
analytic forms with respect to R and z given by Binney et al. (2014,
particularly cf. their tables 2 and 3), and thus acquire the ‘macro’
(namely spatially coarse-grained) kinematics. For the same reason,
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Table 2. Best-fitting values of the parame-
ters defined by equation (22) required to fit
the dependence on (R, z) for or, oy, o, Vp,
respectively.

aj an as aq

OR 1.177 0.688  32.196  0.105
og 0.698 0.661 9.437 0.509
o, 0.615 0.631 34453  0.168

Vo 6.914  0.008 2418 —0.742

we make no efforts in distinguishing different stellar groups, although
we appreciate the difference in the kinematics of stars with different
age and metallicity (Huang et al. 2020).

In fact, we have tried using only the red clump stars in the thin
disc (numbering ~116 000; according to the [Fe/H]-[«/Fe] criterion
by Huang et al. 2020) as the tracer population, which would enable
us to have a better constraint on the density profile of the tracers
(cf. Section 5.3), e.g. by simply adopting the geometrical thin-disc
component in the fiducial mass model as the tracer’s density profile.
But, it turns out that if we do so, many spatial bins at |z| > 1kpc
have not sufficient stars to fit the vy probability distribution (see
below), and thus disable us to perform the 7% tests for those spatial
locations. Because Tk is the important and robust measure to test the
gravitational models (see Sections 5.2 and 5.3), we base our main
results of this work on the entire red clump sample of Huang et al.
(2020), and for safety we test our results by using three schemes
of density profile for the tracers. Besides the results based on the
thin-disc-only red clump stars are consistent with those based on the
entire sample (see Section 5.3).

Binney et al. (2014) presented parametrized formulae for the
spatial distributions of the two meridional-plane components of
stellar velocity dispersions (i.e. velocity ellipsoid), namely o (R,
z) and 03(R, 7), as follows (their equation 4):

o (R, 2) = ooa; exp[—ax(R/Ro — D] [1 + (a3z/R)*]™ . (22)

The above functional form comes out of physical intuition as well as
their trial and error, and work well in practice. Here we adopt the same
formulae for o » and o, and set the parameters (see the constants in
Table 2) to be free and constrained by our data. Formally there seems
a difference in that the formulae of Binney et al. (2014) are for the
two principal velocity dispersions, and here for those along the R and
z directions. But in essence this is not a problem (considering the
semi-empirical nature of the formulae), and has been verified by our
experiment. Rather, this is partly the reason that we allow our best-fit
constants can be different to some degree from those of Binney et al.
(2014).

Binney et al. (2014) presented a novel fitting recipe (see their
equations 7 & 8) to model the distributions of the azimuthal velocities
(vg) of the tracers on every spatial location, i.e. for their every (R, z)
bin; it is well-known, as the asymmetric drift phenomenon, that the
vy distributions are highly non-Gaussian. The Binney et al. (2014)
distribution function takes a form of sigma-varying Gaussian, i.e.
with different o (dispersion) for different vy, for the sample of tracer
stars in a spatial bin, the fitting is extremely good when applied to
observed data.

We make a further innovation on the shoulder of Binney et al.
(2014) out of our exploration: The spatial distributions of the
mean azimuthal velocity (V) and its corresponding oy (derived
by the Binney et al. 2014 methodology, as described in the above
paragraph), i.e. distributions over a range of spatial bins can be well
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fitted by the formula of equation (22) also. The possibility of such an
innovation was actually discussed by Binney et al. (2014, see their
section 4.1), although the RAVE data they used only cover a small
region within ~2 kpc of the Sun. We now have a sample of V, and
o data with larger coverage in the R — z plane than Binney et al.
(2014), which exhibit apparent trends of Vj, and o4 over large spatial
scales enabling us to conduct such an exploration.

Following the methodology described in the above three para-
graphs, we calculate the quantities og, 0 ;, 09, and Vj for every spatial
bins, and then fit their spatial distribution with equation (22). The o
in the equation is fixed to be 30 kms~!. Our best-fit parameters are
listed in Table 2.

Besides the merit of the well-parametrized analytic formulae of
or(R, 2), 0;(R, 2), 09(R, 2), and Vy(R, z) per se, the analyticity of
or(R, z) and o ,(R, 7) leads to a great advantage in calculating T
and T,: derive the partial derivatives analytically (such as dog/dR,
dk/dz, do .19z, etc.), free of the technical difficulties in calculating
those partial derivatives numerically instead (e.g. ‘huge’ errors in
such numerical implementation given the spatial resolutions so far;
see e.g. Chrobdkovd et al. 2020). Again, we would like to stress that
our major motivation of using these spatial-distribution formulae is to
reduce the astrophysical ‘impurities’ such as kinematic substructures.

Regrading the spatial binning of the data, generally we divide the
entire space (4 < R < 16kpc and —4 < z < 4kpc) into bins of
AR = 0.2kpc and Az = 0.05 kpc. We use the bins with more than
10 objects to fit equation (22) for o g (R, z), 0;(R, z), and Vy (R, 2).
As for oy, in order to get relatively reliable fitting to its statistical
distribution within a specific bin (Equation 7 of Binney et al. 2014),
we only employ the bins with more than 50 objects, derive their o,
and fit equation (22) for o4 (R, z). By and large, the spatial bins over
the ‘continuous’ space of 6 < R < 12kpc and —2.5 < z < 2.5kpc
have oy measurements. Thus, the reliable R range for applying the
best-fit spatial distributions (equation 22) is 6 < R < 12kpc (without
poor fitting on the boundaries because of abundant data at R < 6 and
R > 12kpc); the reliable |z| (the distance to the Galactic mid-plane)
range is conservatively deemed to be from the resolution limit (see
Section 5.4) to |z| = 2 kpc.

Regarding the measurement uncertainties of the velocity dis-
persion values in the spatial bins, the 1-o statistical errors in og
are <2.8kms™!, those in o, are <2.5kms™!, and those in oy,
<3.4kms™!, the mean error in any one of the three quantities is
0.5kms~!. The above quoted errors already include the effect of
systematic errors in distance estimation on the derived kinematic
quantities, because the uncertainties of the 3D velocities given by
Huang et al. (2020) have accounted for all kinds of error sources by
Monte Carlo simulation. In fact, the total measurement uncertainty
in distance is 5—10 per cent (see Section 5.2 of Huang et al. 2020) to
which the contribution of systematic bias is minor by virtue of the
power of Gaia. This is totally different from the situation prior to the
Gaia era (cf. Section 5.3 of Binney et al. 2014).

The uncertainties in the fitted parameters of the spatial-distribution
formulae (see equation (22)) are dominated by two parts: the
statistical uncertainties of the kinematic quantities described in the
above, and the physical fluctuations (i.e. deviations from the model
owing to astrophysical reasons, on small spatial scales, say, with R <
1 kpc and z < 0.5 kpc). In the analysis of this study (concerning data
binning, etc.), the two parts are comparable to each other. And, when
used in our Jeans-equations tests (Section 5.2), these uncertainties
are relatively minor compared with the uncertainties in the density
profile of tracers (see Section 5.3). We have checked that our results
are not sensitive to binning schemes (including bin sizes and the
aforementioned thresholds) or fitting methods. The details of the
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data binning and analysis are beyond the scope of this study, and will
be included in a future paper investigating the Galactic kinematics
of Gaia stars.

The tilt angle information (required in the Jeans equations (1)
and (2)) is taken from the measurement by Everall et al. (2019)
for a sample of disc stars with Gaia DR2 astrometry, « = (0.952 +
0.007) arctan(|z|/R).

4.2 Rotation curves and other data

The rotation curve data are from giant stars (Eilers et al. 2019), Classi-
cal Cepheids (Mr6z et al. 2019), and the compilation by Chrobakova
et al. (2020). They are all consistent with the Galactic constants
we use, Ro = 8.122kpc and vy ~ 229kms~'. We note that large
scatters exist in the measured circular velocity between different
works. Therefore, we compile the rotation curve by averaging V.
over bins of AR = 0.5kpc generally, and increase the bin size at
large R to ensure sufficient S/N (see Fig. 1). The typical (mean) 1-o
error of the binned data is 12.1 km s~!. The size of binning, based on
our tests, does not impact our conclusions.

We also used the RAdial Velocity Experiment (RAVE) data
(Binney et al. 2014) to perform the Jeans-equations tests (see below),
and find a good consistence (within 1o confidence) between the
results based on the RAVE and Gaia data.

5 RESULTS AND DISCUSSION

5.1 Rotation-curve test

We compare the rotation curves predicted by models, V.(R) =
JRO®/IR, to the observations. Fig. 1 shows the results. As
expected, the Newtonian baryon-only model under-predicts V. (R)
evidently, deviating from every binned data points by 230 generally.
By adding a DM halo component, the fiducial MW model (see
Section 3.1) appears to match the data well within the 1o errors
of almost all the bins. This is also the case for QUMOND. The MOG
model appears broadly consistent with the data, albeit not as good as
the fiducial DM model and QUMOND, and systematically smaller
than most of the binned data points and the other two gravitational
models.

In order to quantify how well the model predictions are consistent
with the data, we calculate the reduced x? with a degree of freedom
d.o.f. = 27 regarding the 28 radial bins. Obviously, the Newtonian
baryon-only model is rejected by the data with XV2,N =518> 1.
The fiducial DM model agrees with the data with x2p = 0.5;
QUMOND is broadly consistent with the data with QesComm
Xi oumonp = 1.5, and MOG is also acceptable with x; o = 6.6 ~
O(1), in contrast with the Newtonian baryon-only case. These x>
calculations are consistent with the above visual impression from
Fig. 1.

As mentioned in Section 3.1, We have tested the four gravitational
models with other prescriptions of the baryonic mass distributions,
and with other RC data collected from the literature (see the
Appendix), and found that all the tests give conclusions similar to
the above.

5.2 Jeans-equations tests

We use Jeans-equations tests to examine how well the gravitational
models agree with the data outside the Galactic plane. According
to equations (3) & (4), we calculate Tz and 7, based on three-
dimensional kinematic data. Then we compare them to the respective
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Figure 1. Rotation curves of the Milky Way, with the predicted ones of the gravitational models compared with the observations. The cyan data points with
error bars (£10) are our averaged rotation curve over spatial bins with AR = 0.5 kpc (note that we increase the bin size at a few large-R bins), based on the data
of Eilers et al. (2019), Mroz et al. (2019), and Chrobdkova et al. (2020). The baryonic mass parameters is from Wang et al. (2022). The orange, blue, green, and

red curves represent the Newtonian baryon-only, DM, QUMOND, and MOG models, respectively.

radial and vertical components of the potential gradients predicted
by the gravitational models (namely, 0 ®/9R and dP/9z).

Tr and T, the observed radial and vertical accelerations, are
derived from the tracer’s density profile and kinematic data. Their un-
certainties (1o are estimated in terms of standard error propagation,
as follows:

aTr \ 2 aTr \ 2
@ e @

i

and

AT\’ AT\’
e — (ap) €5+Z(axi) . 24)

i

Here, {X;} are the observed quantities, and {ey, }, their uncertainties.
We also include a nominal uncertainty of 20 per cent for the tracer’s
density at each location (R, z).

As for the density profile of the tracer stars, we simply exploit
the (weighted) whole Galactic disc (namely geometrical thin+thick
discs; see their prescriptions in Section 3.1), but with appropriate
proportion between the two disc components:

P(R, 2) = 0.85 X pa min(R, 2) + 0.15 X pg,mick(R, 2). (25)

The proportional factors (0.85 and 0.15) are the fractions in number
of the two disc populations of the red clump stars according to their
chemical classification (see Section 4.1). But we are not sure if,
and how well, the red clump stars follow the spatial distribution
of general stars (cf. Piffl et al. 2014); also not sure how well the
chemically classified thin-disc red clump stars are consistent with
the dynamically best-fit thin disc of Wang et al. (2022). Thus in this
study, we also use additional possible density profiles for the tracers,
and the results are presented in next subsection.

In this subsection, we present the test results for the (R, z) locations
in the way of illustrating Ty (or T;) as a function of R, at different
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altitudes (namely distance |z|) from the Galactic plane. This is
because both the Gaia+LAMOST data and the RAVE data cover
a limited range in |z|. The test results based on the RAVE data are
consistent with those based on the Gaia+LAMOST data. Because
the RAVE-derived Tk and T, have large errors (see the Figures in
the Appendix) and might mislead the reader’s judgment, we do not
plot the RAVE results in the figures of the main text, but plot them
in the Appendix. Because the calculation of Tk requires oy, the (R,
z) space with sufficient data coverage for Tk testis 6 < R < 12kpc
and —2.5 < z < 2.5kpc (see Section 4.1).

Fig. 2 shows the results of Tk test. On the observational-data
side, Tx monotonically decreases with R, which just reflects the
trend of decreasing magnitude of radial acceleration along the
radial direction. On the model side (the coloured lines in the
figure), generally the radial gradients of the four gravitational
models have considerably different magnitudes. The Newtonian
baryon-only model is obviously far below the observed radial
acceleration (Ty), for all (R, z) locations. Likewise, the MOG
model is outside at least the 95 percent confidence interval of
the observed T, for all (R, z) locations. The fiducial DM model
basically lies within the 95 per cent confidence interval of the data
for all the R range at |z| = 0.8kpc (middle panel) and |z| =
1.2kpc (right-hand panel), except for the case of |z] = 0.4kpc
(left-hand panel), where the DM model goes outside the 95 per cent
confidence interval for almost the entire R range. The QUMOND
model behaves best: it lies within the 68 percent (1) confidence
interval for almost all (R, z) locations as displayed in the three
panels.

According to Fig. 2, one may draw the conclusion that QUMOND
fits the data best (within 68 per cent for almost all spatial locations);
DM pass the T test basically, at least for all locations with |z| greater
than a certain height (we will see in Section 5.4 that in term of Tk test,
the fiducial DM model is outside the 68 per cent confidence level for
all locations at z < 0.8 kpc); Newtonian baryonic-only model and
MOG obviously fail. Being conservative and for safety, yet we must
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Figure 2. Radial Jeans-equation (7%) tests of the gravitational models versus the data at various (R, z) locations, illustrated as a function of R at different
altitudes (|z|). In every panel, the dashed black line represents the quantities calculated from the data of the entire Gaia+LAMOST sample of red clump stars
(Huang et al. 2020); Dark and light shades show 68 and 95 per cent confidence intervals, respectively; The orange, blue, green, and red curves represent the

Newtonian baryon-only, DM, QUMOND, and MOG models, respectively.
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Figure 3. As Fig. 2, but showing the vertical Jeans-equation (77) test results.

note that the test depends on the tracer’s density profile we adopt,
and that at least DM and QUMOND cannot be discriminated for sure
(see next subsection).

Independent of the Tk test, we now show the T, test results in Fig. 3,
which illustrate the distributions along R direction for the vertical
gradients of the four potential models at different |z| slices, with
respect to the observed vertical accelerations (77). While the trend
with R is similar to Tx(R), the magnitude of 7 is in general much
smaller than Ty of the same locations by at least a factor of 2. All the
four models are broadly consistent with the observations within the
95 per cent confidence interval. While the Newtonian baryon-only,
the fiducial DM, and MOG models lie close to each other, and are
all within the 68 per cent confidence interval for almost all locations,
yet QUMOND lies with the 68 per cent only at |z| = 1.2 kpc (right-
hand panel). To be worse, for the locations at R < 8.5kpc and |z| =
0.4 kpc, QUMOND is outside the 95 per cent confidence (left-hand
panel); we will see in Section 5.4 that in term of 7, test QUMOND
is outside the 68 per cent confidence level for almost all locations at
z < 0.8 kpc probably, and within that confidence for all locations at
z 2 0.8 kpc.

The discriminating power of T here is not so strong as Tk, as
seen from the above test results. The theoretical reason is that, as
mentioned above, in disc galaxies generally the vertical component
of potential gradient (0 ®/dz, namely the so-called ‘vertical force’ in

the literature) is much smaller than the radial gradient. Thus the dif-
ferences of vertical field strength between those best-fit gravitational
models are squeezed together compared with the differences in their
radial strength (comparing Figs 2 and 3). The observational reason
is that the relative errors (namely the ratios of the aforementioned
€x; to X;) of o is larger than that of o by a factor of ~2 (cf.
figs 11-14 of Binney et al. 2014), which are the dominating error
terms of the observed vertical and radial accelerations 7, and Tk,
respectively. Thus, as displayed in Figs 2 and 3, the error bars of T,
(and importantly the relative errors) are much larger than those of Tx
at the same spatial locations.

5.3 The common results from using different tracers’ density
profiles

As stated above, the major caveat of this work is that we lack the
knowledge of the shape of the density profile of the tracer population
(see p(R, z) in Section 2), and have to represent it by using the
profiles of general populations of the disc stars, such as the weighted
thin+thick geometrical disc model of Section 3.1 as we adopt in the
preceding subsection. Using different density profiles to represent
the tracers’ spatial distribution may give different values of T and
T,, and thus change the relationship between 7Tk and dP/0R (and
between 7, and 9 ®/9dz).
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In this subsection, we assess the impact of the uncertainty in
tracer’s density profile to our Jeans-equations tests, with the follow-
ing strategy. We believe that the real shape of the tracer’s density
profile should be embraced by the two main populations of disc
stars, namely the geometrical thin and thick discs. Thus we also
use the thin-disc and thick-disc profiles (prescribed in Section 3.1)
to calculate T and T, and then safely base our conclusions about
Jeans-equations tests on the common results shared by the schemes
of using the three kinds of density profiles.

Compared with the above weighted thin+thick disc profile
scheme, the thin-disc profile scheme results in larger values of both
Tgr and T, (particularly for large-|z| locations), whereas the thick-
disc profile scheme leads to smaller values. Interestingly, while 7,
changes dramatically in the two schemes (increased by factors of 1.8—
3.1in the thin-disc scheme, and decreased by a factor of 0.4—0.8 in the
thick scheme), Tk changes mildly in the two schemes (increased by
factors of 1.0-1.3 in the thin-disc scheme, and decreased by a factor
of 0.9-1.0 in the thick scheme). That is, while the 7, test is sensitive
to the tracer’s density profile, the Tk test is relatively insensitive and
thus robust.

The most important Tk and 7, result in common among the three
profile schemes (excluding the thick-disc profile scheme for T, test;
see the next paragraph), in a sentence, is the following: both the
fiducial DM model and MOND always lie in 95 per cent confidence
intervals with respect to Tk and 7, for almost all locations with
|z| greater than a certain altitude (probably >0.5 kpc, see next
subsection), while the MOG model lie farther away from the Ty data
at many locations (let alone the baryon-only Newtonian model). In
addition, there is a second notable point: On the side of gravitational
models, the DM model is always larger than MOND in the radial
field strength, yet always smaller than MOND in the vertical; what is
more, relative to the observed accelerations at low-|z| locations, the
radial field strength of the DM model may even systematically larger
than Ty (outside the 95 per cent confidence) while the vertical field
strength of MOND may even systematically larger than 7, (outside
the 95 percent confidence), which will analysed in detail in next
subsection.

The thick-disc profile scheme of the 7, tests yields that all the four
gravitational models lie beyond the 95 per cent confidence intervals
of the data for almost all spatial locations (see Fig. 5, middle panel).
This fact indicates that the real density profile of the tracers, i.e.
the red clump stars of Huang et al. (2020), is closer to the thin-disc
profile than the thick-disc one. This inference is definitely correct
because, as we recall, the sample of Huang et al. (2020) is dominated
by thin-disc red clump stars (116 000 of 137 000; see Section 4.1).
Thus, the T, tests for the total red clump sample equipped with the
thick-disc profile does not means that this scheme rules out all the
four gravitational models, but means that 7', test is sensitive to tracer’s
density profile. This inspires us to consider the merit of this sensitive
dependence in the end of this subsection.

We demonstrate the test results of the two additional schemes
(thin-disc profile and thick-disc profile) in Fig. 4 (T tests) and Fig. 5
(T, tests), together with the weighted thin+thick profile scheme as
the reference. To present more new information, besides the Tz(R)
and T, (R) results of the additional two schemes for z = 1.2kpc, we
plot the results of the three schemes for higher altitudes (z = 1.5 and
2.0kpc), where our data reach and the three density profiles for the
tracers differ from each other significantly. From the figures we can
easily see the above-stated features of the test results of the three
schemes, particularly the most important result in common.

Besides as already mentioned in Section 4.1, we have tried to
use only the thin-disc red clump stars chemically selected from the

MNRAS 519, 4479-4498 (2023)

Huang et al. (2020) sample to perform the 7% and 7, tests. In this trial,
the number of the data points for Ty test (i.e. the spatial locations
with valid oy and Vj) considerably decreases comparing with the
above analysis, and thus the power of Tk test is impaired. The test
results of the available data points, with the thin-disc density profile
correspondingly, are consistent with those presented in the right-hand
panels of Fig. 4. The number of the data points for 7, test decreases
not so significantly, and thus we can perform all the tests, as did in
Fig. 5. First, of course the T, tests of the trial case sensitively reject
the schemes adopting the density profiles of the weighted total disc
and the thick disc (see left and middle panels of Fig. 6). Second,
indeed, the trial tests equipped with the thin-disc density profile get
somehow improved than the corresponding ones of the entire-sample
case: MOND and the other three models (the three clustering closely
in the T’ plots) all together lies within the 95 percent confidence
interval for almost all locations and even within the 68 percent
interval for a large fraction of the locations (please compare the
respective right-hand panels of Figs 5 and 6). Anyway, no matter
whether in terms of T or T, tests, the conclusion remains the same as
we conservatively state in the above (namely, the result in common).

Concerning the dependence of T on tracer’s density profile,
we have seen from the above analysis that the dependence is not
negligible, at least for the commonly assumed density profiles in
the literature (namely the prevailing prescriptions of the Galactic
disc components). Thus we would like to caution that if one use
R-directional Jeans equation to calculate certain quantities (e.g. the
rotation curves on and off the Galactic plane, Chrobakova et al.
2020), the uncertainty caused by tracer’s density profile has to be
accounted for.

More importantly, concerning the sensitive dependence of 7, on
tracer’s density profile, actually there is a potential application. It is
generally difficult to directly derive the density profile of the tracer
population (e.g. red clump stars) with high completeness (cf. Piffl
et al. 2014). Instead, if we can constrain the other quantities, i.e.
gravitational potential and velocity dispersion, then we will be able
to place tight constraints on the spatial distribution of a specific
population of stars (i.e. tracers), by taking advantage of the sensitive
T, measure.

In practice, one can even use the two measures in turn as follows.
First, the 7, measure is employed to pick up plausible models for
the tracer’s density profile (based on a grossly correct gravitational
model). Then Tk is used to discriminate various gravitational models
with subtle discrepancies. The two steps can be iterated to get both the
best parameterized tracer’s density profile and gravitational model.

5.4 Combining radial and vertical dynamics at low altitudes:
vexing for both MOND and spherical DM haloes?

From the above two subsections, all the meaningful tests come
to a convergent result that the Newtonian baryon-only model and
MOG are rejected, and the fiducial DM model and MOND are
consistent with the T and 7, data generally.> However, there appear
systematical trends at low-|z| locations discomforting for both DM
and MOND. For a deeper investigation of the possible low-|z|
problem, in this subsection we plot the Tk and T, tests as functions of
|z], at three radial positions R = 7, 8, and 9 kpc. Since the thin-disc
stars in our sample are not capable to give Ty tests over large |z|

3Concerning MOG and MOND, certainly there is a caveat: they are tested by
assuming the baryonic matter distribution is the prior one (Section 3.1) that
was best-fitted in the DM paradigm.
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Denotations are the same as in Fig. 2.

range, (see also Section 5.3), here we only exploit the test results
based on the total sample equipped with the weighted thin+thick
disc profile.

Regarding the resolution limits in the z direction to T, T, and the
corresponding radial and vertical components of field strengths of the
four gravitational models (gx, Eom> Evonp, and Eyiog), We estimate as
follows. The spatial binning size in z is 50 pc for the kinematic data
(see Section 4.1), then according to Nyquist’s sampling theorem,
the resolution limit to the kinematic quantities (e.g. o) is twice.
Tk and T, involves the first derivative of those kinematic quantities
with respect to z, so their spatial resolution limit requires at least
two adjacent resolved units, i.e. four times the binning size namely
0.2kpc. On the gravitational models’ side, likewise, the spatial
resolution limit to the above field strengths is four times the size
of a grid cell, namely 0.24 kpc. Thus, in the figures we only plot
the range from |z| = 0.25 kpc (the resolution) to 2 kpc that our data
reliably cover.

In the Tx—z plots (Fig. 7) the radial field strength of the fiducial DM
model lies outside the 95 per cent confidence interval at the locations
with |z] S 0.5kpc, and does not enter the 68 percent confidence
until |z] 2 0.8 kpc; this trend of inconsistency with the Tk data gets
somehow worse with R moving outwards. On the contrary, the radial
field strength of MOND always lies in the 68 percent confidence
interval at every location.

In the 7,—z plots (Fig. 8) the vertical field strength of the fiducial
DM model always lies in the 68 per cent confidence interval of every
locations. On the contrary, the vertical field strength of MOND lies
outside the 95 per cent confidence interval at the locations with |z|
< 0.5kpc, and does not enter the 68 per cent confidence until |z| 2
0.8 kpc; this trend of inconsistency with the 7, data gets somehow
alleviated with R moving outwards.

In summary, when |z| 2 0.8 kpc, both the fiducial DM model and
MOND lies within the 68 per cent confidence of 7 and 7, for all
locations. But, at low altitudes (say |z| < 0.5kpc), there may be
problematic: DM with respect to 7z, and MOND with respect to T7,.
The exact |z| values have something to do with the tracer population,
which is subtle to handle as we demonstrated in Section 5.3; we defer
this issue to future work. There is a possibility that the real Galactic
gravitational potential, particularly its inner part, is in between the
fiducial DM model with a spherical DM halo and the MOND, i.e. in
the DM language, the halo may be oblate (cf. Figs 9 and 10 in next
subsection).

Note that in Figs 7 and 8, there are qualitative differences in
the shape as a function of |z| between the kinematic accelerations
(namely Tx(z) and T,(z)), and the field strengths of the four models
(gr(z) and g,(2)). The Tx(z) (or T,(z)) shapes, in the range shown
in the figures, are convex, while the shapes of the four gx(z) (or
g.(z)) lines look similar and are not so curved. The reason is that
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Figure 5. As Fig. 4, but for T test results.

the functions underlying the kinematic and dynamical quantities are
different. The dynamical g(z) lines are basically determined by either
the DM halo function (in the case of the DM model) or the baryonic
matter distribution (the other three models), and both the DM halo and
baryonic distribution functions decay monotonically farther out (see
Section 3.1). The kinematic Tx(z) and 7%(z), on the other hand, are
determined by the functions, p(R, z) (the tracer’s density distribution
we adopt) and equation (22) (spatial-distribution function of velocity
quantities), and their derivatives, the Tk and 7T, shapes with respect
to |z| are thus complex. We can imagine, both Tx(z) and T, (z) would
increase rapidly with |z| when |z| larger than a certain value because
of the exponential decay of p(z); this just means that the assumed
tracer’s density profile, likely as well as the extrapolation of the
spatial-distribution function of velocity quantities, breaks down in
that |z| range. It is right because of the above reason that in Figs 7 and
8, we only plot the range |z| < 2 kpc (see Section 4.1), and compare
the models (g) with the data in terms of confidence intervals only.

In the literature, it is being hotly debated as to the shape of the
Galactic DM halo is oblate, spherical, or prolate, with observational
evidence both for and against an oblate shape of the inner Galactic
gravitational potential (see Hattori, Valluri & Vasiliev 2021 and the
references therein). In our above analysis of the possible small-
altitude problem, as the exact |z| range and the degree of DM
and MOND deviating from the data depend somehow on the tracer
population and its density profile we use, thus at this point we leave
this problem open.
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In the history of MOND research, it is a vexing issue about
MOND’s possible over-prediction of vertical acceleration; see sec-
tion 3.1.2 of Banik & Zhao (2022) for a detailed account. We have
noticed that Lisanti et al. (2019) came to the strong conclusion
that gravitational models of MOND type failed to simultaneously
explain both the rotational velocity and vertical motion of stars in
the solar neighborhood. In our opinion, there are technical reasons
that explain the tension between their conclusion and our not-so-
discriminating one. There are several problems in their data and
modelling method. The most serious is the key data set they used:
the observed number density (n(z)) and vertical velocity dispersion
(0;(2)) of three mono-abundance stellar populations at R = R,. The
same data set has been thoroughly analysed by Biidenbender et al.
(2015), which turned out that the DM densities estimated by the
different stellar populations are inconsistent with each other (see
particularly their Fig. 3 and Section 3), owing to a major reason
that the data set did not measure the cross-dispersion component o g,
of the velocity ellipsoid. Hessman (2015) also analysed that data
set, and achieved the same diagnostic as Biidenbender et al. (2015),
along with his other caveats on vertical Jeans-equation modelling;
in fact, as stated in the Introduction, importance of the cross term
o g, has been well proved in past decade. By the way, the rotation-
curve information Lisanti et al. (2019) used was limited to a single
location, the Solar radius (cf. McGaugh 2016). Concerning their
modelling method linking n(z) and o,(z), which is the completely
one-dimensional Jeans modelling (namely the simplest K, method),
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Figure 6. As Fig. 5, but for T test results using only the data of the thin-disc red clump stars chemically selected from the Huang et al. (2020) sample.

now itis clear that neither the ‘tilt term’ in vertical Jeans equation nor
the ‘rotation-curve term’ in Poisson equation can be neglected (see
the sixth paragraph of the Introduction and the references therein).

McGaugh (2016) performed K, analysis with the ‘rotation-curve
term’ considered and yet without accounting for the ‘tilt term’
involving o g, (see his equation 12), based on the K, (vertical force)
data measured by Bovy & Rix (2013). The K, data were derived by
complicated action-based distribution function modelling, with one
assumption being that both o and o, are not dependent on z, i.e.
their vertical profiles being constant (see Section 3.1 of Bovy & Rix
2013). A caution mentioned in passing: the ‘rotation-curve term’ in
Poisson equation (jargon used in this paper; also Read 2014) was
called ‘tilt term’ in section 4.7 of McGaugh (2016). Hessman (2015)
also critically analysed the K,(z) problem of the Bovy & Rix data
set, along with his comments on the ‘accuracy versus precision’
issue of the advanced yet complicated (and thus over-simplified
practically) method of distribution function modelling (particularly
cf. his Section 3). Recently Binney & Vasiliev (2022) described in
detail the problems of the (unrealistic) quasi-isothermal distribution
function model adopted in Bovy & Rix (2013) for Galactic-disc
populations.

Besides the above-inspected studies based on the Galactic data,
there are studies based on stellar velocity dispersion (o,) and
other properties of galactic-disc stars of external galaxies (listed in
section 3.1.2 of Banik & Zhao (2022); see also the Introduction).
Just like the status quo of those Galactic studies, the external-

galaxies ones are also inconclusive; one reason lies in the difficulty of
measuring both o, and requisite other properties (e.g. scale height, or
stellar mass-to-light ratio or alike) consistently from the same stellar
population (see e.g. Milgrom 2015; Angus et al. 2016; Aniyan et al.
2021).

5.5 Exploring the ‘extra mass/gravity’

Echoing the early names of the DM problem, such as missing, hidden,
excess or extra mass, and excess or extra gravity with interest, we
explore the extra mass or extra gravity in excess of the Newtonian
baryonic one for the DM, QUMOND, and MOG models.

We first explore the differences in gravitational potential pre-
dicted by the three models (denoted as ®y,04e1)) compared with the
Newtonian baryon-only case (®y), namely AP = Oy — Dyoqel,
also we explore the corresponding gradients of the potential differ-
ence, namely the vector difference in field strength, gdel — v =
V(PN — Dpoder). Hereafter we call them extra potential and extra
gravity, respectively; yet by definition the two are interchangeable
essentially. Fig. 9 plots the distributions of the three AJ and
the corresponding extra gravity in the meridian plane. The extra
potential of the fiducial model (namely the DM halo; see the middle
panel) is spherically symmetric as prescribed by the Zhao’s profile.
QUMOND (left-hand panel) gives a comparable extra potential in
magnitude to the DM case, but the shape of the extra potential is
fairly flatten in the z-direction (i.e. an oblate gravitational potential).
MOG yields a slightly oblate extra potential (right-hand panel); this
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is clearer in Fig. 10, which can be interpreted as the divergence of
the ‘extra gravity’ field. In addition, the magnitude of the MOG extra
potential is ~1.5 times of the QUMOND or DM one on average.
The magnitude of the extra gravity in MOG is instead fairly smaller
than the other two gravitational models (see the bottom row), which
is in fact consistent with the systematic smallness of MOG in the
rotation-curve test (i.e. the gravitational acceleration at z = 0). From
Sections 5.2 and 5.3, we have seen that our Jeans-equations tests
(mainly the Ty) disfavour the MOG model, yet presently cannot judge
for sure which one of the fiducial DM model (namely spherical halo)
and MOND, or some one in between, matches the data to a better
degree.

Next, we translate the ‘extra potential’ (the above A®) into the
effective ‘extra mass’ in the Newtonian sense, simply using normal
Poisson equation. In the case of the DM model, this translation is
physical and exact, and the extra mass is just the DM halo. We must
caution, however, that such a translation is merely mathematical for
any modified-gravity models, and the concept of ‘extra mass’ is even
misleading (for the case of MOG:; see below).

In the case of QUMOND, interestingly, this translation is mean-
ingful (albeit without any physical content), and the ‘extra mass’ is
the very concept of ‘phantom dark matter’ described in Section 3.2.
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This is because the QUMOND formulation has a great merit that
its gravitational potential can be naturally decomposed, and ascribed
in the Newtonian sense to two matter components: the baryonic
matter (the real) and the effective DM (the phantom). The effective
PDM density distribution on the R — z plane is shown in Fig. 10
(left-hand panel). Compared with the density distribution of the DM
halo of the fiducial mass model (the middle panel), the QUMOND
PDM is morphologically closer to a traditional (quasi-)spherical DM
halo plus a disc-shaped component, which is consistent with that
presented in, e.g. Wu et al. (2008).

In the case of MOG, just as generic modified-gravity theories
(e.g. the AQUAL realization of MOND proposed by Bekenstein &
Milgrom 1984), such an ‘extra mass’ translation is merely effective;
i.e. the extra mass distribution (plus the baryonic one) is used in the
DM paradigm to mimic the MOG gravitational potential. We plot
the MOG’s ‘extra mass’ in the right-hand panel of Fig. 10, just for
an intellectual curiosity. We stress again that our tests are based on
MOG’s gravitational potential, not on the density distribution of the
‘extra mass’ described in this subsection. Certainly, it is correct and
useful to view the ‘extra mass’ (Fig. 10) as the divergence of the
‘extra gravity’ plotted in the bottom row of Fig. 9.
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5.6 On the effective equivalence between MOND and DM

After decades of search, DM particles have not been found still
(Feng 2010). Particularly, from the observational standpoint, the tight
correlations between DM and baryonic matter cannot be explained
satisfactorily within the DM framework (Bullock & Boylan-Kolchin
2017). On the other hand, MOND (or its generally covariant descen-
dants), taken in its present form, has not been proved to be a mature
fundamental theory. It seems that we still have a long way to go
discovering the nature of the ‘dark matter problem’. Just in the above
context, we are excited by the present study, tightening the effective
equivalence between MOND and DM on circumgalactic and galactic
scales, or called ‘CDM-MOND degeneracy’ (Banik & Zhao 2022);
to be precise, it is the effective equivalence between the PDM of
MOND and (possibly oblate) DM haloes, in the sense of acting
as gravitational-potential models. A possibility that the effective
equivalence is hinting®: a new synthesis may arise, reconciling, and
transcending both MOND and DM paradigms. The thinking behind
is as follows. First of all, all the observed correlations between
‘DM’ and baryonic matter can be explained easily and elegantly
by the simple Milgrom (1983) law (namely the essence of MOND),
basically without any a free parameter. This surprising fact suggests
the delicate mechanism of the interaction between baryons and ‘DM’
(particles, or fields, or effective ones) for the future theory, either
in the form of a new gravity (say, an effect of quantum gravity,
or even a new dynamics/law of nature?), or in the form of a new
ingredient within the established quantum field theory, or in a third
way. Furthermore, if we take a broader vision, which sees dark energy
and DM as two facets of a single origin as some researchers have
pursued (e.g. Zhao & Li 2010), then the effective equivalence would
point to quantum vacuum, as Milgrom’s critical acceleration constant
suggests (by 2may ~ cHy ~ ¢*/A/3). Finally, we would like to
remark that, if there is any minimum value in the above vision,
MOND might be better interpreted as an effect of modified inertia
(e.g. Milgrom 1999), and even hints at nonlocality (nonlocal inertia of
Milgrom 1999, albeit being non-quantumlike for now), and reminds
us of the role of quantum vacuum as ‘fluid of virtual particles’.
Although being exciting, this kind of thinking is speculative so far,
and here we refrain from brain-storming farther.”

5We must admit that the effectiveness of the equivalence between MOND and
DM as gravitational-potential models is only within the best observational
constraints available so far, and further tightened by comparing with the
MOG case (see Section 5.2), i.e. effective to some degree only. Of course,
their equivalence is not absolute: as illustrated by Figs 9 and 10, the two are
different per se. Besides, plausibly they both deserve to be transcended, as
discussed in this subsection.

7 We want to add a final remark: In all covariant modified-gravity theories so
far, which are different from the modified-inertia interpretation as Milgrom
stressed, one or more additional fields are required; those fields have energy
and thus are additional sources of gravity, but their stress-energy distribution
does not follow that of normal matter (although with other kinds of delicate
coupling mechanisms between the additional fields and normal matter; see
e.g. Hossenfelder 2017). Thus, virtually it is interchangeable to call them
additional fields, modification of gravity, additional (non-normal) stuff or
directly non-baryonic DM this is in fact one broader theoretical background
inspiring us to think about the effective equivalence between MOND and DM
on galactic scales. That is, in the direction of modified-gravity interpretation
of MOND, the theoretical developments also point to, and have already
suggested, a transcending synthesis of the two paradigms (particularly cf.
Section V of Hossenfelder 2017). After all, from a modern viewpoint of
quantum field theory, the two paradigms can be conceptually viewed as
effective theories for ‘collective excitations’ of quantum vacuum (Wen 2003).
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On the other hand, thinking practically, we can exploit the effective
equivalence. As demonstrated in the present study for any practical
purposes when researchers want to study the kinematics on galactic
scales, they can safely use the QUMOND formula (i.e. the gravita-
tional field of the ‘phantom dark matter’) as an alternative of DM
halo models. This approach will save the researchers from handling
various prerequisites and fine tuning the cumbersome parameters of
DM haloes.

6 SUMMARY

In terms of the complete form of Jeans equations that admit three
integrals of motion, we perform tests on gravitational models for the
Milky Way, based on the latest three-dimensional (i.e. R-, z-, and
0-directional) kinematic data over a large range of (R, z) locations.
Our primary aim is to discriminate between MOND and DM halo
models with MOG (as well as Newtonian baryon-only model) as
comparison. The kinematic data we use here are mainly based on the
sample of red clump stars compiled by Huang et al. (2020), which
are powered by the Gaia DR2 astrometry.

In the Gaia era (from the DR2 onward), previous long-standing
problems concerning observational data (e.g. systematic bias in
distance estimation) are gone. The major factors that affect dynamical
modelling of the Milky Way now are of astrophysical origin (the
complexity of real galaxies), e.g. kinematic substructures, still rich
discrepancies inside a certain tracer population, and so on (see
Sections 4.1 and 5.3). As far as the data we use are concerned, the
typical 1-o error in the rotation—curve data to fit is 12kms~', and in
the velocity-dispersion data fitting the spatial-distribution formulae
(see below), 0.5kms~!.

Regarding the stellar kinematics that we derive based on the data
of Huang et al. (2020), aside from the analytic form proposed by
Binney et al. (2014) for the spatial distributions of o and o, we
find that the spatial distributions of o4 and Vj also can be well fitted
by the same functional expression, namely in the form of o4(R, z)
and Vj(R, z). We fit the function to the four sets of data, respectively,
and obtain best-fitting parameters for the spatial distributions of the
four kinematic quantities (see Table 2). We then use the kinematic
data calculated in terms of the formulae to perform the Ty and T,
tests on every spatial locations. The advantage is at least two-fold:
(1) free of the numerical artifacts caused by numerical differentiation
given the limited spatial resolutions of the observational data, and
more importantly (2) reducing the impact of various kinematic
substructures in the Galactic disc.

The main results of our comprehensive tests (Sections 5.1, 5.2,
5.3, and 5.4) are summarized as follows:

(1) The Newtonian baryon-only model, as expected, is rejected not
only by the rotation-curve test (namely dynamics in the Galactic-disc
plane), but also by the R-directional Jeans-equation test (7) for all
spatial (R, z) locations.

(i) Concerning the three models with ‘extra mass or gravity’
(fiducial DM model with a spherical halo, MOND and MOG),
rotation-curve data alone (with z = 0) cannot reject any one of
them for sure (see Figs 1 and Al).

(iii) The most important result in common among the Jeans-
equation tests with meaningful tracers’ density-profile schemes is
the following: both the fiducial DM model and MOND always lie
in 95 per cent confidence intervals in terms of both Tk and 7, (the
observed radial kinematic accelerations) for almost all locations with
|z| greater than a certain altitude (|z] = 0.5 kpc probably), while the
MOG model lie farther away from the Ty data at many locations
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(assuming the prior baryonic matter distribution best-fitted in the DM
paradigm). In particular, both DM and MOND models are equally
consistent with the Tk and 7, data within 68 per cent confidence of
every locations at |z| 2 0.8 kpc.

(iv) At low-|z| locations, there may be problematic trends for
MOND and the fiducial DM model with a spherical halo, respec-
tively: the radial field strength of the DM model seems systematically
larger than T while the vertical field strength of MOND seems
systematically larger than 7. To be specific, in the Jeans tests based
on the entire red-clump star sample equipped with the weighted total
disc density profile, at locations with 0.5 < |z] < 0.8 kpc, DM is in the
68-95 per cent confidence while MOND within 68 per cent in terms
of Tk, and MOND is in the 68-95 percent confidence while DM
within 68 per cent in terms of 77; at |z| < 0.5 kpc, DM is outside the
95 per cent Tk confidence of every locations, and MOND is outside
the 95 per cent T, confidence of every locations. The exact |z| range
and the degree of DM and MOND deviating from the data depend
somehow on the tracer population and its density profile, and thus
are uncertain at this point. There is a possibility that the real Galactic
gravitational potential, particularly its inner part, is in between the
fiducial DM model with a spherical DM halo and MOND; that is, in
the DM language, the inner halo may be oblate.

First of all, the above test results consistently point to an ob-
servational conclusion: Even in the condition of current kinematic
data with the precision and accuracy powered by Gaia DR2 (and
the measurement uncertainties are no longer the major concern
from now on), which is able to reject the MOG model (let
alone the Newtonian baryon-only model; and see the caveat in
Footnote 5), the MOND model is still not rejected, and behaves
as good as the fiducial DM model through Jeans-equations tests
on all spatial locations over 5 < R < 12kpc and —2.5 < z <
2.5kpc (namely the (R, z) space with sufficient data coverage).
This is surprising, because (1) there is no free parameter at all
in the QUMOND model, i.e. without any fitting (let alone pre-
fitting), and (2) the parameters of the baryonic mass model are
actually fine-tuned in the DM context; on the contrary, the fiducial
DM model we adopt was fitted already with all available Galac-
tic kinematic data (even the same as part of the rotation-curve
data set we use), and has been kept improving elaborately for
decades. Secondly, both the fiducial DM model with a spherical
halo and MOND may have their respective vexing facet at low-
attitude location (see the forth item above), which awaits further
investigations.

The physical implication of the above test results, what excites
us the most, is the concept that we are tempted to put forward
in this paper: the effective equivalence of DM and MOND on
circumgalactic and galactic scales (see Section 5.6 and Foot-
note 6). There may be a value in this concept (as this kind of
equivalence is effective and hints at both paradigms being effec-
tive): A new synthesis may arise, reconciling, and transcending
both MOND and DM. On the other hand, from a pragmatic
standpoint (the two being equivalent or degenerate gravitational-
potential models for now), we can exploit the effective equivalence
in this way: when researchers want to study the kinematics on
galactic scales, they can use the QUMOND formula (i.e. the
gravitational field of the ‘phantom dark matter’) as an alterna-
tive of DM halo models. This is safe at least on the precision
and accuracy level of kinematic data derived from Gaia DR2.
This approach will save the researchers from handling various
prerequisites and fine tuning the cumbersome parameters of DM
haloes.
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Besides the above astrophysical outputs, the present work discov-
ers the instrumental advantages of the two measures, Tk and 7. The
two measures defined kinematically in terms of the complete form of
Jeans equations (in axisymmetry at this point; Section 2) represent
the observed radial and vertical accelerations (fed with kinematic
data). They both exploit three-dimensional kinematics, admit three-
integral dynamics, and respect three-dimensional Poisson equation.
Thus, first of all, as stated in the Introduction (also in Section 2),
they surpass previous commonly used methods, such as rotation-
curve test that is essentially a one-dimensional method (namely
concerning the R-directional dynamics only), the simple K, method
that is completely one-dimensional also (simplifying a galaxy as
z-directional slabs), and most Jeans-equation applications in the
literature (assuming dynamics of two integrals of motion only). More
importantly, out of the present work (Section 5.3), we find that Tk
test is fairly insensitive to the choice of tracer’s density profile, and
thus is robust in discriminating gravitational models, while the merit
of T test is instead its sensitivity to tracer’s density profile.

Looking forward to the near future, we expect to use more (as well
as better) kinematic data from, e.g. Gaia DR3 astrometry and ongoing
large-scale spectroscopic surveys; importantly, to perform more
realistic treatments in galactic modelling (e.g. handling substructures
and refining tracer populations), and update the Jeans-equations tests
of the present study. Immediately, we would like to make full use
of the two measures, 7T¢ and T, in the iterative way as described
in Section 5.3: first, employ 7 to constrain the model parameters
of tracer’s density profile (based on a grossly correct gravitational
model); second, employ Tk to discriminate gravitational models with
subtle discrepancies; then the two steps are iterated to consistently
obtain the best realistic tracer’s density profile and best gravitational
model. By doing so, we hope to achieve the final goal: what a
gravitational potential can represent the real Milky Way.
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releases at http://www.lamost.org/public/?locale = en . The distance
and 3D velocity data, as well as other information, of the red
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clump stars of Huang et al. (2020) we use in this work are
publicly available by following the link provided by Y.Huang:
https://zenodo.org/record/3875974 . All the data-analysis code of this
work, as well as all data and results at intermediate levels, are publicly
available at https://github.com/ydzhuastro/JeansTest-MW .

A NOTE IN PROOF

While this article was in press, we were made aware of Milgrom
(2022) which shows that it is possible to construct modified-inertia
models of MOND where vertical accelerations are less enhanced
than in modified-gravity models of MOND. Such modified-inertia
models may occupy the middle ground between spherical DM halos
and QUMOND:; i.e., may fit the real, probably oblate gravitational
potential of the Milky Way suggested in subsection 5.4 of this paper.
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APPENDIX: TESTS BASED ON THE LEGACY
GALACTIC CONSTANTS

As we stated in Section 3.1 and Section 5.1, We have exploited
other parameterizations of the Galactic mass distribution and other
kinematic data in the literature, including those under other sets of
the solar position and velocity constants (Ry and vg), and found
that our conclusions presented in the main text remain intact. In
the Appendix, we present such an examination: the results based on
the mass models and kinematic data adopting the legacy Galactic
constants Rg = 8 kpc and vg = 220kms™".

In order to use all kinds of rotation curve data in the literature,
we employ the software galkin (Pato & locco 2017). galkin
is a powerful tool that contains the largest compilation of rotation
curve data of the MW from the literature, and can bring the data
uniformly to a specific Galactic coordinate system the user sets (in the
Appendeix here, we use the usual Galactocentric cylindrical system
with the above legacy Galactic constants).

To be consistent with the legacy Galactic constants in this ap-
pendix, we adopt the Galactic mass model that was best fit with the
‘Weaker Ry prior’ by McMillan (2017), where the best-fit R, and vg
are consistent with the legacy values within 1o uncertainty. McMillan
(2017) use the Bissantz & Gerhard (2002) parametric formula for the
bulge (with an axisymmetric approximation), exponential profiles
for the stellar discs, the Dehnen & Binney (1998) model for the
interstellar medium discs, and the NFW profile for the DM halo. The

Table Al. Parameters of the ‘Weaker R prior’ mass model

of McMillan (2017).

disc Thin Thick Hi H,
Yo[Mg kpc’z] 9.52¢8 1.20e8 5.31e7  2.18¢9
Ralkpc] 2.40 3.47 7.0 1.5
zalkpe] 0.3 0.9 0.085 0.045
Rmlkpc] - - 4.0 12.0
Spheroid Halo Bulge - -
poMokpe™]  6.98¢6  1.02el1 - -
rhlkpc] 21.21 - - -
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NFW halo profile is as follows:

£0,h

STt "

On
where x = r/r,, with r, being the scale radius and y = 1. The
parametrizations of the other profiles are detailed in Section 3.1.
The specific parameters are listed in Table Al. In fact, all main-
stream Galactic mass models that prevailed in the literature have no
substantial difference from each other; this is at least true for the goal
of our present study.

Fig. A1 shows the rotation curve for the ‘Weaker R, prior’ model.
We also calculate the reduced x? with a degree of freedom d.o.f. =
23 regarding to 24 radial bins of the data. The DM, QUMOND,
and MOG models have reduced 2y = 0.2, X& qumonp = 0.2, and
Xx2mog = 0.5. This is consistent with the visual inspection from
Fig. Al, i.e. all the three gravitational models match most of the
binned data points within their 10 measurement uncertainties. In
contrast, not surprisingly at all, the Newtonian baryon-only model is

MNRAS 519, 4479-4498 (2023)

not favoured with x;\ = 3.4, larger than the other three models by
an order of magnitude. We note that the x? values here are smaller
than those in Section 5.1 because the measurement uncertainties of
the binned data points are large; this is reasonable considering that
the galkin compilation is heterogeneous.

We also present the Jeans-equations tests based on the ‘Weaker R,
prior’ mass model of McMillan (2017), and the three-dimensional
velocity data as described in Section 4. The results are presented in
Figs A2 and A3. As mentioned in Section 5.2, we also show the
RAVE-based results whose Tk and T, have large errors. It is evident
that these new Tk and T, tests are also consistent with our results in
Section 5 based on the W22 mass model.

This paper has been typeset from a TEX/IATgX file prepared by the author.
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